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Abstract. Recent advances in precision manufacturing have generated an increasing demand for accurate
microscale three-dimensional metrology approaches. Structured light (SL) sensory systems can be used to suc-
cessfully measure objects in the microscale. However, there are two main challenges in designing SL systems to
measure complex microscale objects: (1) the limited measurement volume defined by the system triangulation
and microscope optics and (2) the increased random noise in the measurements introduced by the microscope
magnification of the noise from the fringe patterns. In a paper, a methodology is proposed for the design of
SL systems using image focus fusion for microscale applications, maximizing the measurement volume and
minimizing measurement noise for a given set of hardware components. An empirical calibration procedure
that relies on a global model for the entire measurement volume to reduce measurement errors is also proposed.
Experiments conducted with a variety of microscale objects validate the effectiveness of the proposed design
methodology. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.12.124109]
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1 Introduction
Recent advances in precision manufacturing1,2 have gener-
ated an increasing demand for the development of efficient
and accurate microscale three-dimensional (3-D) metrology
approaches. Microscale manufacturing has enabled many
revolutionary devices in varying applications such as
implanted microrobots and wireless swallowable capsules in
biomedicine,3,4 microlens arrays in optics,5 and nanodrones
in aerospace,6 with feature sizes in the range of 1 μm to
10 mm. These applications pose significant challenges to
current 3-D metrology techniques, such as coordinate meas-
urement machines, laser interferometry, and stereomicro-
scopy, in terms of measurement speed, accuracy, robustness,
and ability to handle surfaces of arbitrary complexity.2

A number of challenges need to be addressed when meas-
uring complex microscale objects. For example, traditional
optical approaches cannot be directly used to measure com-
plex objects in the microscale domain due to their limited
depth of field (DOF), the short focal lengths of optical micro-
scopes, and the reduction of the signal-to-noise ratio when
objects are magnified.2 In particular, it is not possible to
keep the entire object in focus; therefore, only a portion of
the object can be measured with a single point of view and
focus setting. Thus, to overcome these problems, robust
algorithms need to be developed to cope with noisy images
due to the magnification used.2

In this work, we define complex objects as those that have
large surface gradients and/or surface discontinuities such as
sharp edges, holes, and grooves, while simple objects refer to
those that have smooth surface profiles with gradients similar
to plane surfaces. To date, structured light (SL) sensory
systems with digital fringe projection technology,7–14 laser

interferometry,15,16 and digital holographic microscopy17,18

have been successfully developed to measure objects at the
microscale. Of the three, SL sensory systems have emerged
as a popular method for measurement due to their ability to
(1) measure surfaces without scanning,19 (2) provide accu-
rate and real-time measurements,7 and (3) make use of
off-the-shelf hardware components for implementation.20

SL systems have been developed following two
approaches: (1) modifying stereomicroscopes to include
fringe pattern projection8–10 or (2) integrating microscope
lenses with a camera and a projector and placing them in
an arbitrary triangulation configuration.7,11–14 These SL sys-
tems were able to show the potential of using SL technology
to measure different microscale objects. However, this was
done within a limited measurement volume, which was
imposed by the triangulation configuration and the micro-
scope optics specifications. Furthermore, the fringe patterns
used by these SL systems need to explicitly consider the
effect of low signal-to-noise ratio that arises from micro-
scope magnification when obtaining microscale 3-D mea-
surements. Hence, a detailed investigation needs to be
conducted to define the design constraints for developing
SL systems to measure microscale objects to obtain the
most accurate measurements given a set of hardware
components.

Our previous research in this area comprises the develop-
ment of design methodologies: to determine the hardware
triangulation configuration of SL systems without micro-
scope lenses21 and the optimal patterns for reducing random
noise in 3-D measurements for these SL systems.22 In this
paper, we present a comprehensive design methodology
and calibration procedure needed for the development and
calibration of SL sensory systems with microscope lenses,
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using image focus fusion to effectively increase the measure-
ment volume. In contrast with iterative, ad hoc design
approaches for SL systems, the proposed design methodol-
ogy extends our previous work21,22 to uniquely provide
a formal procedure to determine the optimal design of the
hardware triangulation configuration and the corresponding
fringe patterns to obtain SL systems for accurate microscale
measurements. The proposed calibration procedure takes
into account image focus fusion and fits a single, empirical,
global calibration model, which is valid across all camera
and projector pixel coordinates, to all calibration data for
narrower confidence intervals on predictions.

Our unique methodology first considers the specifications
of the microscope lenses to determine the triangulation con-
figuration that provides the maximum measurement volume.
Then, it minimizes the increased noise that is a direct result
of microscope magnification by identifying the optimal
fringe patterns that will minimize the random noise in the
3-D measurements. After these two stages have been imple-
mented, a calibration procedure is utilized to provide the
necessary global calibration model for the increased meas-
urement volume. The proposed design methodology and
the calibration procedure are implemented on an SL system,
and its performance is validated by measuring objects with
varying surface profiles.

2 3D SL Systems for Microscale Measurements
This section provides an overview of the related work on the
SL systems proposed for microscale measurements. First,
existing SL systems developed for microscale measurements
are presented. Then, calibration procedures for such systems
are discussed.

2.1 Development of Microscale Systems

Numerous structured-light systems have been developed for
microscale measurements. As in macroscale SL systems,
these systems make use of both imaging and pattern projec-
tion hardware. Imaging hardware usually consists of charge-
coupled device (CCD)8,10–12 or complementary metal-oxide-
semiconductor (CMOS)14 cameras. Pattern projection, on the
other hand, includes a variety of methods to project SL pat-
terns onto the object of interest. These include sinusoidal
grating with an light-emitting diode light source,8 a matrix-
shaped array of pinholes to create light dots,9 and fringe
projection using liquid-crystal display11,12 and digital
micromirror device (DMD)10,14 projectors. Furthermore,
all microscale SL systems also make use of some micro-
imaging optics such as long working distance microscope
lenses11,12,14 and stereomicroscopes8 to both view and project
the patterns onto objects of interest.

While most systems are designed with static measure-
ments in mind, some systems have been developed to
achieve real-time performance. For example, in Ref. 10,
a graphics processing unit was used to allow for parallel
image acquisition and post-processing to render real-time
images at a frame rate of ∼30 Hz. Other SL systems have
been designed with special considerations such as increasing
the DOF14 and minimizing system size.7 For example, in
Ref. 14, the Scheimpflug principle was used to obtain the
SL hardware configuration needed to increase DOF. In
Ref. 7, an SL system consisting of a microphase-shifting
sinusoidal fringe projector and CCD camera with long

working distance (LWD) microscope lenses mounted on a
rigid fixture was designed to have a compact footprint and
measure out-of-plane displacements with submicron resolution.

In general, SL system performance has been typically
evaluated in terms of the measurement error of reference
objects such as coins8,12 and spheres.9 Reported errors
range between 1 and 17 μm.10,14

2.2 Calibration of Microscale SL Systems

System calibration is important to the development of high-
accuracy SL systems. The accuracy of the 3-D reconstruction
depends on the accuracy with which model parameters
can be estimated based on calibration data.14 Calibration
approaches that have been proposed in the literature for SL
systems can be classified into two categories: (1) model-
based approaches that rely on parameterized physical models
of the system (e.g., pinhole and orthographic projection
models), with model parameters that are estimated based
on calibration data14,23–25 and (2) empirical approaches that
utilize statistically derived models to map the actual mea-
sured information (e.g., image coordinates) to the desired
measurement variable (world coordinates of the object
surface).1,8

In general, model-based and empirical calibration
approaches have been proposed for SL systems to measure
macroscale objects.26–29 Some of these approaches even con-
sider cases in which the camera and/or projector are out-of-
focus by estimating pinhole camera model parameters from
out-of-focus images.27–29 However, calibration of SL sys-
tems for measuring microscale objects poses the following
additional challenges: (1) microscale measurements require
special lenses whose optics typically deviate from pinhole
models, thus requiring new calibration approaches23 and
(2) these lenses usually have shallow DOF, thus limiting
the volume in which the target object can be in focus. In par-
ticular, the shallow DOF poses a challenge for calibration
approaches that rely on multiple images of a calibration
object at different poses inside the measurement volume,
therefore, limiting the set of independent measurements
that can be made of the calibration object. This introduces
collinearity and ill-conditioning problems when only few
similar orientations are considered in the model fitting algo-
rithms to determine calibration parameters. To deal with
these challenges, several calibration approaches have been
proposed specifically for microscale measurements.

2.2.1 Model-based calibration for microscale
measurements

Driven by the challenges imposed by the required optics to
measure microscale objects, the model-based approaches
used for macroscale measurements have been analyzed
and customized to address the challenges of microscale
measurements.14,23–25,30 SL-based 3-D surface profiling in
macroscale applications has extensively used calibration
approaches that estimate the intrinsic parameters of the camera
and projector, as well as the extrinsic parameters of the SL
system triangulation configuration,23,24 based on pinhole opti-
cal models. However, microscale SL systems require special
lenses whose optics deviate from these pinhole models.23

Hence, alternative procedures have been presented for the
calibration of microscale SL systems, as described below.
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In Ref. 30, a calibration method was proposed for an SL
3-D microscopic system consisting of a projector using an
LWD microscope lens, modeled with pinhole optics, and
a camera with a telecentric lens, modeled as an orthographic
projection of the scene with a constant magnification.
In the proposed calibration procedure, intrinsic and extrinsic
parameters of the projector and camera are obtained from
multiple calibration images. In Ref. 14, a model-based cal-
ibration approach consisting of a general imaging model that
mapped each pixel in the camera CCD sensor or the projector
DMD panel with a unique light ray was used. Pixel-to-pixel
correspondences obtained from absolute phase values served
to identify homologous pixel pairs (from the same light ray).
The mapping of pixels to light rays was established for each
pixel and stored in a look-up table (LUT).

Such model-based calibration approaches are based on
physical modeling of the system optics and require multiple
images of the calibration object with different poses within
the measurement volume to define a calibration data set
with a large number of linearly independent samples. This
makes model-based approaches unsuitable for SL systems
for microscale measurements in which the large optical
magnifications that are used result in shallow DOFs. For
these reasons, the literature in microscale measurements
focuses on empirical calibration models.

2.2.2 Empirical calibration models for microscale
measurements

Empirical calibration models rely on linear regression to cre-
ate a mathematical model that maps the surface profile of an
object Sðx; yÞ to the captured phase values at a given location
ðx; yÞ on the imaging sensor. These empirically based math-
ematical models are usually referred to as phase-to-height
equations. As an advantage, empirical calibration approaches
can be used regardless of the optics of the system and are
thus suitable for systems with pinhole lenses, telecentric
lenses, or combinations thereof. Therefore, empirical calibra-
tion approaches are suitable for SL systems for microscale
applications.

To calibrate an SL system empirically, the direction of the
z-coordinate (also known as depth or range) is defined, typ-
ically aligned with the bisector of the angle between the opti-
cal axes of the camera and projector1 or with the optical axis
of the camera.8 In Ref. 1, a flat calibration object was placed
on precision microstages and imaged in a sequence of
positions as it was moved along the z-coordinate. Then,
a relationship was established between the known position
of the calibration plane measured with respect to the refer-
ence plane and the change in phase value for that pixel with
respect to the phase value that the pixel had when the cali-
bration plane was placed in a reference position. In Ref. 8,
the phase-to-height relationship was used. Namely, an empir-
ical calibration model was proposed as a linear regression of
the reciprocal of height as a function of the reciprocal of
phase, with a different set of regression coefficients for
each pixel, stored in an LUT.

Though empirical calibration approaches using LUTs can
be used regardless of the optics model of the system, their
main disadvantage, aside from their memory storage require-
ments, is that each pixel-specific regression model is fitted to
a small data set containing only information about the height
of the surface that is observed at that camera pixel. For

instance, if during the calibration procedure the calibration
object is imaged at 10 different locations in the z-coordinate,
the LUTapproach would require fitting one regression model
for each pixel based on (at most) 10 data points. Due to the
small number of data samples used to fit the regression
model, the resulting model coefficients are sensitive to
noise in the calibration data and result in a larger predictive
variance, i.e., wider confidence intervals for the model pre-
dictions. Hence, in this work, as opposed to using LUTs and
one regression model for each image pixel, we propose using
a single, global calibration model fitted to all the calibration
data for all pixels using the absolute phase values. Such
a calibration model is valid for all pixels in the image and
is able to predict, with narrower confidence intervals, the
world coordinates of the object surface.

3 Design of SL Systems for Microscale
Measurements

We present herein a design methodology that considers the
characteristics of 3-D measurements obtained from an SL
system that incorporates microscope lenses. This methodol-
ogy consists of (1) determining the SL system configuration
of the hardware components and (2) identifying the pattern
sequence for the optimal SL system configuration obtained.
The first step determines the optimal triangulation configu-
ration of the projector, camera and a reference plane such
that the measurement volume is maximized. Then, the sec-
ond step provides the sequence of the fringe patterns for the
SL system configuration determined in the previous step.

3.1 SL System Configuration

The triangulation configuration between the camera, projec-
tor, and the measured object directly affects measurement
accuracy. Namely, hardware implementation issues such
as physical interference, working distances of the lenses,
field-of-view (FOV), and DOF can impose a set of geomet-
rical constraints that can significantly limit design choices
for the system triangulation configuration, as we noted in
Ref. 21 for macroscale measurements. Hence, the first
step in the development of an SL system for microscale
measurements is the design of the hardware triangulation
configuration.

The design methodology presented in Ref. 21 is adapted
to SL systems using microscope lenses. Namely, the hard-
ware triangulation configuration for the SL system for micro-
scale measurements is designed using the methodology
shown in Fig. 1, which consists of the following steps:
(1) design problem definition, (2) design constraints identi-
fication, and (3) optimization of SL configuration. In the first
step, design variables and performance metrics are defined
given hardware specifications (i.e., camera and projector
resolution, pixel size, and lens focal lengths) and the user-
defined parameters. In the second step, design constraints
posed by practical limitation of the hardware components are
formulated. Finally, the constrained optimization problem
formulated in the first two steps is solved in the third step
by evaluating through simulation the measurement volume
of the SL system. The output of this step is an optimal
SL system configuration.

For SL systems for microscale measurements, the optimi-
zation objective is to maximize the size of the measurement
volume Vm:
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EQ-TARGET;temp:intralink-;e001;63;336 max Vmð~uÞ; subject to gð~uÞ ≤ 0; (1)

where ~u ¼ ðzref ; w; l; h; αC; βCÞ is the vector of (geometric)
design variables and gð~uÞ is the vector of the constraints (e.g.,
no physical interference between the projector and camera
hardware). The design variables consist of zref , which defines
the position of a vertical reference plane where the camera
and projector optical axes intersect; w (width), h (height),
and l (length), which define the relative position of the cam-
era with respect to the projector, and the angles ðαC; βCÞ,
which correspond to the camera orientation.

Given the design objective and constraints above, an opti-
mal system configuration will ensure that the SL system is
using the maximum volume defined by the limited DOF and
FOV imposed by the microscope lenses. Namely, this design
methodology for the hardware configuration provides the
optimal system triangulation that maximizes the overlap
between the FOV and DOF of the camera and projector
optics, while considering the design constraints defined to
avoid physical interference of the hardware components.
Optimization was carried out in an iterative manner until
<1% improvement in the measurement volume was observed
between iterations.

3.2 SL Pattern Sequence for Optimal System
Configuration

Once the optimal system configuration has been determined,
the design of the fringe patterns needs to consider the effect
of random noise on the 3-D measurements. The 3-D coor-
dinates are determined based on the projector-camera
pixel-to-pixel correspondence, which is established by the
absolute phase values obtained from a sequence of fringe
patterns. To reduce the random noise in the absolute phase,
a sequential phase unwrapping method is utilized, which first
uses the absolute phase from a single-fringe pattern set to
unwrap the relative phase from a multifringe pattern set
and then progressively uses the resulting absolute phases
from sets with increasing numbers of fringe patterns to
unwrap the relative phase from the next set. The reduction
in random noise in absolute phase values obtained by the
sequential unwrapping of the pattern sequence is of particu-
lar importance during the calibration and the measurement
steps at the microscale. As Sec. 5 will show, pixel-to-
pixel correspondences, which are estimated from phase val-
ues, can introduce significant errors in the calibration data.
Hence, the design methodology described in Ref. 22 is used
for optimizing pattern sequences for SL microscale measure-
ments. However, since the random noise in relative phase for
SL systems with microscope lenses varies with the number
of fringes, the random noise in relative phase of such SL sys-
tems is estimated based on all the number of fringes consid-
ered instead of using only the pattern with one fringe as in
Ref. 22. The adapted design procedure for SL systems for
microscale measurements, shown in Fig. 2, consists of the
following tasks: (1) determining the feasible set of fringes
for the SL system, (2) estimating the random noise in relative
phase for each fringe pattern, and (3) identifying the set of
fringe patterns that minimizes the random noise in the abso-
lute phase resulting from sequential phase unwrapping.

The first task in the procedure is to determine the set of
fringes Sn that will be considered for designing the pattern
sequence, given the pattern resolution as an input. The
pattern resolution is the number of pixels that will be used
to encode the light patterns. For SL systems using sinusoidal
phase-shifted light patterns that are encoded along one

Fig. 2 Design procedure to determine SL pattern sequence for micro-
scale measurements.

Fig. 1 Design procedure to determine the SL system configuration for
microscale measurements.
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coding axis, the pattern resolution is the number of pixels of
the DMD panel in the direction with the largest number of
pixels, typically the horizontal direction nH. Based on the
pattern resolution, the largest number of fringes to be con-
sidered in Sn corresponds to the case in which the light pat-
tern is encoded with at least 5 pixels per fringe, ensuring that
the peaks and troughs of the sinusoidal wave are properly
captured. In addition, to avoid aliasing during sequential
phase unwrapping, the fringe patterns must encode all the
pixels in the coding axis, i.e., the number of fringes must
be an exact divisor of nH. With these considerations,
the set of fringes Sn is defined as Sn ¼ fnfg, where
nf ∈ f1;2; : : : ; nH∕5g and nH mod nf ¼ 0.

The second task is to estimate the noise in the relative
phase values caused by random noise in image intensity
from the fringe patterns with all the number of fringes in
the set Sn. The statistical properties of the random noise
in relative phase can be estimated from the distribution
of phase values from repeated measurements. The relative
phase value of each pixel can be obtained using all-in-
focus (AIF) images of phase-shifted patterns, where the
AIF images are acquired using the method described in
Sec. 4.2. In this work, we use three phase-shifted patterns.
The relative phase value of each pixel is obtained by22

EQ-TARGET;temp:intralink-;e002;63;488ϕcðx; yÞ ¼ arctan

� p
3 · ½IC1 ðx; yÞ − IC3 ðx; yÞ�

2 · IC2 ðx; yÞ − IC1 ðx; yÞ − IC3 ðx; yÞ
�
; (2)

where the pixel coordinates ðx; yÞ represent coordinates in
the camera coordinate frame C and IC1 , I

C
2 , I

C
3 correspond

to the intensity of the three phase-shifted captured patterns,
respectively. In addition, to take into account the effect of
shallow DOF of microscope optics, e.g., the noise introduced
by unfocused images, the noise in phase values is determined
at different positions along the z-axis (depth dimension)
within the target measurement volume. The end result of
this process is a full characterization of the noise in phase
values, as a function of z-position and the number of fringes
of the pattern projected.

The last task in the methodology is to identify the set of
fringe patterns for sequential phase unwrapping. This set
minimizes the random noise in the absolute phase that results
from the sequential phase unwrapping. The absolute phase of
a pixel is determined by22

EQ-TARGET;temp:intralink-;e003;63;261

ΦC;k
nf ðx; yÞ ¼ 2π round

�
nf · ΦC;k−1

ref ðx; yÞ − ϕC
nf ðx; yÞ

2π

�

þ ϕC
nf ðx; yÞ; (3)

where ΦC;k
nf is the absolute phase at the current (k) phase

unwrapping step resulting from the relative phase ϕC
nf of

a pattern with nf fringes and the reference phase
ΦC;k−1

ref ðx; yÞ is the absolute phase from the previous unwrap-
ping step (k − 1) or from the single-fringe pattern (when
k ¼ 1). The effect of the random noise introduced during
phase unwrapping is simulated for the set of fringes by
(1) creating a set of ideal images of the fringe patterns;
(2) determining ideal relative phase values from these images
using Eq. (2); (3) adding random noise to these relative phase
values based on the range of noise levels estimated on

the previous task of the methodology; (4) determining the
absolute phase using phase unwrapping, i.e., Eq. (3), for
the set of multifringe patterns; and (5) determining the stan-
dard deviation of the resulting absolute phase when varying
the random noise level. Hence, for each unwrapping step, the
number of fringes in the multifringe pattern is determined by
minimizing the noise level. Namely, the number of fringes
that minimizes the norm of the gradient of the random
noise of the absolute phase16

EQ-TARGET;temp:intralink-;e004;326;653 arg min
nf

ZZ
k∇σΦC

nf
k2dσΦC

ref
dσϕC

nf
; (4)

where σ denotes the standard deviation of the random noise
in phase and k∇σΦC

nf
k2 corresponds to the L2-norm of the

gradient of σΦC
nf
. The L2-norm of the gradient is integrated

over the range of noise levels estimated in the second step of
the methodology. Sequential unwrapping terminates when
there is <1% random noise improvement between the k − 1
unwrapping step and the k unwrapping step

EQ-TARGET;temp:intralink-;e005;326;525

����
σΦC

nf ;stepk
− σΦC

nf ;stepk−1

σΦC
nf ;stepk−1

���� ≤ 0.01: (5)

4 Calibration of SL System for Microscale
Measurements

Once the SL systems have been implemented using an opti-
mal hardware configuration and pattern sequence, we use an
empirical calibration model to predict the world coordinates
of the object surface. Our proposed calibration approach pro-
vides one global model valid for all pixels in the captured
images; hence, it simultaneously considers data from multi-
ple pixels to capture variable interactions (e.g., caused by
radial distortion, optical aberrations, or varying focus set-
tings). A single empirical calibration model can be used
to characterize the relation between image coordinates, pro-
jector coordinates, and world coordinates due to the use of
multifocus imaging and fusion, which creates a single all-in-
focus image. The empirical approach allows for modeling of
the relationship between coordinates independent of the
internal parameters of the camera, which may vary using
our multifocus imaging and fusion method.1 This calibration
model can reduce the variance of the estimated model param-
eters and model predictions.

The calibration procedure, shown in Fig. 3, consists of the
following steps: (1) multifocus imaging of the calibration
object within the desired measurement volume, (2) focus
fusion of images obtained in step 1 to generate all-in-focus
images of the fringe patterns, (3) image feature detection of
features on the calibration object for determining world coor-
dinates on the calibration object, (4) image feature remap-
ping from camera to projector image coordinate frame
using the absolute phase to correlate camera pixel, projector
image, and 3-D spatial coordinates, and (5) model fitting to
the acquired data set and selection of the best-fitting model.
Once the system is calibrated, only steps 1 and 2 followed by
the application of the fitted model would be required for
measuring an object of interest.
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4.1 Multifocus Imaging of the Calibration Object

In this step, the calibration object is imaged under multiple
focus settings, at various positions within the measurement
volume, and under different illumination conditions. The cal-
ibration object containing a grid of markers with known size
and spacing is placed on a precision stage and gradually
moved with fixed steps of equal distance along the z-axis,
which is aligned with the depth dimension. Images are cap-
tured for the calibration object at each position, starting from
the farthest position (ZW ¼ 0) to the closest z-position to the
sensory system. Then, the object is returned to the ZW ¼ 0
position and moved with fixed steps of equal distance in the
y-direction, and the process is repeated multiple times so that
the calibration object markers form a dense grid within the
measurement volume. This dense grid ensures that the cal-
ibration model (Sec. 4.5) has enough data to provide accurate
predictions of the world coordinates of the object surface
when obtaining surface profile measurements (Sec. 6).

At each position of the calibration object, the fringe
patterns are projected and captured using different focus
settings of the optics. This ensures that each region of the
measured object has been captured, in focus and illuminated
for each pattern. In addition, fully illuminated images
(with no fringes) are captured at the same set of focus set-
tings; these images are used during the focus fusion step,
described next. The end result of this process is a set of
nfocus × ðnpatterns þ 1Þ images, where nfocus is the number
of focus settings and npatterns is the number of fringe patterns,
incremented by 1 to account for the fully illuminated images.
When capturing images at a range of focus setting, motors
are used to automate the change in focus settings.

4.2 Focus Fusion

After the images with different focus settings have been cap-
tured, a post-processing step is performed to fuse images
from multiple focus settings into a single AIF image for
each fringe pattern. First, the fully illuminated images of
the object are fused with the selective all-in-focus (SAF)

algorithm,31 as shown in Fig. 4. The SAF algorithm starts
by determining a focus measure for each pixel in each
image and a selectivity measure that quantifies the deviation
of this focus measure from its ideal Gaussian behavior.
Then, each pixel of the AIF image is computed as a weighted
average of the intensity values of that pixel in all the input
images, using the selectivity measure as weights. These
weights are then used to fuse the images of the light patterns
captured at the same focus settings. We do this to reduce the
potential errors that may be introduced if focus fusion is
directly applied to the fringe pattern images due to the vary-
ing illumination of the fringe patterns themselves.

4.3 Image Feature Detection

The next step in the calibration approach is to automatically
detect features in the images of the calibration object, namely
its circular markers. The AIF fully illuminated image is used
to determine the image camera coordinates ðuC; vCÞ of each
marker at each z-position using an automated feature detec-
tion algorithm. A Hough transform31 is used in this work to
identify the image coordinates of the calibration object
markers, due to its robustness to the presence of noise in
the images. The final result of the image feature detection
step is a data set of ncalib points containing the world coor-
dinates of the calibration object markers (XW;k, YW;k, ZW;k),
known from the position of the motion stages, and the image
coordinates of these points in the camera sensor (uC;k, vC;k),
k ¼ 1; : : : ; ncalib, determined from the captured images
through the automated detection procedure.

4.4 Image Feature Remapping

In this step of the calibration procedure, the image coordi-
nates of the calibration object markers are remapped to
the projector panel. Previous steps of the calibration pro-
cedure have resulted in a data set (XW;k, YW;k, ZW;k, uC;k,
vC;k), k ¼ 1; : : : ; ncalib, containing the world and image coor-
dinates of the calibration object markers. To complete this
calibration data set, however, the image coordinates of

Fig. 3 Calibration procedure for SL system for microscale measurements.
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the calibration object markers in the projector panel
ðuP;k; vP;kÞ must be determined. To this end, the coordinates
of the markers are remapped to the projector viewpoint using
the phase values of the pixels surrounding each calibration
marker, as follows.

For the k’th calibration object marking, its coordinates in
the projector panel, ðuP;k; vP;kÞ, are determined by first iden-
tifying the absolute phase values ðΦH;k;ΦV;kÞ that corre-
spond to the image coordinates of the markers (uC;k, vC;k)
in the camera. Feature detection algorithms determine the
image coordinates of the markers with subpixel accuracy
(i.e., pixel coordinates are real numbers, not integers),
while the absolute phase values are only available at integer
pixel coordinates in the camera. Hence, a bilinear inter-
polation approach is used to determine ðΦH;k;ΦV;kÞ from
the phase values captured by the camera at the pixels that
surround the pixel ðuP;k; vP;kÞ, where the k’th calibration
marking was detected. The bilinear interpolation can be
expressed as

EQ-TARGET;temp:intralink-;e006;63;543ΦH;kðuC;k; vC;kÞ ¼ a0 þ a1uC;k þ a2vC;k þ a3uC;kvC;k; (6)

EQ-TARGET;temp:intralink-;e007;63;513ΦV;kðuC;k; vC;kÞ ¼ b0 þ b1uC;k þ b2vC;k þ b3uC;kvC;k; (7)

where ai and bi, i ¼ 0; : : : 3, are the interpolation coeffi-
cients. Once the absolute phase values ðΦH;k;ΦV;kÞ of the
markers are known, the corresponding image coordinates
in the projector panel ðuP;k; vP;kÞ can be uniquely determined
by linear interpolation.

4.5 Model Fitting and Selection

The final step in the calibration procedure consists of fitting
a set of regression models to the calibration data and

selecting the best fitting model among this set using statis-
tical tools. In this work, a single empirical calibration model
is used for all camera pixels to predict each 3-D world coor-
dinate of each point on the object surface as a function of its
camera and projector pixel coordinates, namely

EQ-TARGET;temp:intralink-;e008;326;697XW ¼ fXðuc; vc; up; vpÞ; (8)

EQ-TARGET;temp:intralink-;e009;326;667YW ¼ fYðuc; vc; up; vpÞ; (9)

EQ-TARGET;temp:intralink-;e010;326;641ZW ¼ fZðuc; vc; up; vpÞ; (10)

where uc, vc and up, vp are the camera and projector image
coordinates of the point on the object surface, respectively.
XW , YW , and ZW are its coordinates in the world reference
frame, and fk, k ¼ X; Y; Z are regression functions with
coefficients determined based on the calibration data set gen-
erated in the previous steps. LUT approaches used in the
literature require creating one model similar to Eqs. (8)–(10)
per each pixel in the image, each fitted only to data for that
particular pixel. This results in a large number of models,
each fitted to a very small set of data, yielding a larger pre-
diction variance. Alternatively, the calibration approach that
we propose in this work uses a single global model for each
world coordinate that is fitted to data from all pixels and is
thus able to capture the global trends and nonlinear inter-
actions between input variables, which may arise due to
image distortions, optical aberrations, or image shifts caused
by changing focus settings. More importantly, using all pixel
data to fit a single model for each world coordinate allows for
a larger data set, which leads to more robust estimates for the
calibration parameters and narrower confidence intervals for
the model predictions, in contrast with LUT approaches.

Fig. 4 Illustration of the focus fusion procedure. Images (a)–(c) are taken with different in-focus regions
that are fused together to generate (d) a single all-in-focus image with all the regions in focus.
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Based on previous work8 that has used polynomial func-
tions to establish phase-to-height relationships, in this work,
polynomial regression functions up to third order are consid-
ered candidates for fk. The choice of considering only
polynomials of up to third order is based on the statistical
principle of parsimony32 and is further verified in this
work through analysis of regression residuals and model
selection metrics, discussed later in this section. The itera-
tively reweighted least squares (IRLS) method33 is used to
determine the coefficients for the candidate calibration
models that are robust to outliers in the data, which may be
caused by vibration, ambient illumination, object albedo, or
other noise sources.

Once all the candidate calibration models are fitted to the
calibration data, the model selection metrics below are used
to select the best model for that particular data set.32 In this
context, the best model is defined as that which fits the data
well without overfitting, thus exhibiting better generalization
capabilities.32 In particular, in this work, both the residual-
mean-squared error and the leave-one-out cross-validation
error are calculated, respectively, as

EQ-TARGET;temp:intralink-;e011;63;521MSresðpÞ ¼
SSEresðpÞ
n − p

; (11)

EQ-TARGET;temp:intralink-;e012;63;478CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
PRESS

r
; (12)

where n is the number of observations; p is the number of
model coefficients (a measure of “complexity” of the model);
SSEresðpÞ ¼

P
n
i¼1 ðŷi − yiÞ2 is the sum of squared errors

between the value of the i’th observation yi and the
value of the i’th observation predicted by the fitted model
ŷi for a regression model with p parameters; and PRESS ¼P

n
i¼1 ðŷ−i − yiÞ2 is the prediction sum of squares for leave-

one-out cross validation, where ŷ−i is the value of the i’th
observation predicted by a model fitted to a data set from
which this observation has been removed. Equations (11)
and (12) above are model selection metrics commonly
used in multivariable prediction; models with lower values
of these metrics are preferred.

Following standard practices in model selection,34 the cal-
ibration data set is split into two subsets. One data set, named
the training data set and containing 80% of the observations,
is used to determine the model coefficients and, using cross-
validation approaches, to select the best model for the data.
The second set, named the validation data set and containing

the remaining 20% of the data, is used after the models are
fitted and a model is selected to provide an unbiased assess-
ment of its predictive abilities.

5 Development of an SL Sensory System for
Microscale Measurements

This section presents the development of an SL system for
microscale measurements following the proposed design
methodology. The SL system developed consists of a DLP
projector (Texas Instrument Inc. DLP Light Commander,
1024 × 748 pixel resolution) for projecting the fringe pat-
terns onto the measured object, a CMOS camera (Adimec
Quartz Q-4A180 camera, 2048 × 2048 pixel resolution)
for capturing the deformed patterns, their corresponding
LWD microscope lenses, and a microcontroller to synchron-
ize the projection and capture of the fringe patterns, as shown
in Fig. 5. The lenses used with the projector include a Nikon
45 mm f/2.8-D tilt-shift lens, a Fujinon CCTV 8-mm lens as
reverse lens, a 20×Mitutoyo objective lens, and a 6.5× zoom
microscope lens. The stackable microscope lenses of the
camera include a 20× Mitutoyo infinity-corrected LWD
microscope objective lens, a 6.5× motorized ultra-zoom
microscope lens, and a 1.0× tube lens. The complete SL
system was mounted on a passively damped optical table
to minimize the effect of vibration on the experimental
results.

5.1 SL System Configuration

The SL system for microscale measurements was developed
and implemented following the steps of the design method-
ology presented and discussed in Sec. 3.1. The design meth-
odology was applied to determine the optimal configuration
of the hardware components shown in Fig. 5. The measure-
ment volume for the SL system developed was defined to
be 0.5 × 0.5 × 0.5 mm3.

5.2 Pattern Sequence for Optimal System
Configuration

The optimal pattern sequence for the optimal SL system con-
figuration was determined following the procedure discussed
in Sec. 3.2.

5.2.1 Set of fringes

Step 1 of the proposed methodology was applied to determine
the set of fringes Sn of the SL system. Since the horizontal
resolution of the projector is 1024 pixels (direction used

Fig. 5 (a) 3-D SL sensory system for microscale measurements and (b) world coordinate system indi-
cated on the system setup.
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for pattern encoding), the set of fringes is given by Sn ¼
fnfg ¼ f1; 2; 4; 8; 16; 32; 64; 128g, where nf corresponds
to the number of fringes that satisfies the two conditions of
(1) nf ∈ f1; : : : ; 1024∕5g and (2) 1024mod nf ¼ 0.

5.2.2 Random noise in relative phase

Step 2 of the procedure was used to determine the noise in
phase values. Fringe patterns with all the number of fringes
included in the set Sn were projected onto a vertical calibra-
tion plane placed within the measurement volume. The plane
was moved to 11 different positions in 50-μm increments
along the z-axis using a three-axis translational stage (Thor
Labs PT3M). The random noise in phase was estimated by
(1) taking repeated measurements of the plane for each
z-position, (2) calculating the noise as the standard deviation
of the phase values at each pixel with respect to the z-posi-
tion, and (3) taking the average noise of all the pixels for each
plane position. Figure 6 shows the average phase noise for
each number of fringes at the different plane positions con-
sidered. The noise in relative phase increased when the plane
was imaged at the positions ZW ¼ f0; 100; 450; 500g μm,
which corresponded to the positions that are outside the

in-focus region. Hence, the measurement volume in which
both the camera and the projector are in focus is defined
to be within ZW ¼ 100 and ZW ¼ 400 μm.

5.2.3 Pattern sequence

Step 3 of the procedure was implemented to determine the
optimum set of multifringe patterns among the set of existing
fringes determined in step 1. Based on Fig. 6, a value of
0.25 rad for the noise in relative phase was used, and
η ¼ 1.5 was considered; hence, the noise level was set to
be within 0 < σϕC

nf
< 0.375 rad, which provided an approxi-

mate upper bound for the phase noise for patterns with up to
64 fringes. The absolute phase Φ̃C

nf was simulated Nreps ¼ 20
times for each random noise value defined by incrementing
by 0.009 rad through the aforementioned range.

Equation (3) was used to identify the optimal set of
patterns for the SL system. The number of unwrapping
steps was determined to be four, resulting in patterns with
{1, 2, 4, 8, 16} fringes. Figures 7(a) and 7(b) show the results
for the first and the last phase unwrapping steps where
the random noise in the resulting absolute phase σΦC

nf
is

presented in logarithmic scale as a function of the number
of fringes nf and the random noise level of the relative
phase σϕC

nf
and the reference phase σΦC

ref
. The larger number

of fringes is represented with lighter shades in Fig. 7. For the
first unwrapping step, Fig. 7(a), it can be seen that nf;step 1 ¼
2 fringes minimizes the random noise in the absolute phase
for the entire range of σϕC

nf
and σΦC

ref
. Similarly, after four

unwrapping steps, Fig. 7(b), it can be seen that nf;step 4 ¼ 16

fringes provides the minimum random noise in the resulting
absolute phase.

5.3 Calibration

For system calibration, the procedure described in Sec. 4 was
used. A planar calibration object, a 25 × 25 mm, 0.125-mm
spacing, opal distortion target from Edmund Optics Inc.,35

featuring a grid of circles with a radius of 62.5 μm and
a spacing of 125 μm was used. The calibration object was
mounted on top of the three-axis translational stage to move
the calibration object through the measurement volume.
The position repeatability of the stage is 1.5 μm.

The calibration plane was placed vertically on the stage,
i.e., with the normal of the plane aligned with the z-axis. The

Fig. 6 Relative phase noise of fringe patterns projected onto a flat
plane moved along the z-axis of the measurement volume for micro-
scale measurements.

Fig. 7 Effect of random noise in relative and reference absolute phases on the absolute phase for varying
random noise levels during (a) the first and (b) the fourth (last) unwrapping steps.
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plane was gradually moved with a fixed step along the z-axis,
in 50-μm steps, starting from the farthest (ZW ¼ 0 μm) to
the closest z-position (ZW ¼ 500 μm) to the SL system.
Then, the plane was returned to the position ZW ¼ 0 μm
and moved 20-μm steps in the y-direction a total of
6 times, each followed by another set of 50 μm movements
in the z-direction. This procedure resulted in a total of
66 plane positions.

5.3.1 Multifocus imaging of the calibration object

For each position of the calibration object, the optimal pat-
tern sequence, namely patterns with {1, 2, 4, 8, 16} fringes,
was projected. In addition, for each position, a fully illumi-
nated pattern was also projected for focus fusion. For each
pattern, images were captured using a procedure for captur-
ing images at multiple focus settings. This procedure
consisted of (1) searching the peak focus of an image to
determine the in-focus region, (2) varying the focus level
to position the in-focus region at the left of the camera
view, and (3) imaging the camera view with images at suc-
cessive focus levels until the in-focus region was at the right
of the camera view. This resulted in a collection of images
with a small in-focus region that moved across the camera
view.

5.3.2 Focus fusion

The images captured in the previous step were post-proc-
essed to combine the in-focus region from multiple images
captured with different focus levels into a single AIF image
for each fringe pattern at each calibration object location.
The fully illuminated images were processed first to deter-
mine how to map the in-focus region from each image to
the final AIF image. This mapping was then used for the
focus fusion of the remainder pattern images.

5.3.3 Image feature detection

The circular Hough transform,30 a circle detection algorithm
based on the Hough transform, was used to determine the
location of the centers of the circular markings in the cali-
bration object. The world coordinates of the circle centers
were defined based on the known position of the stage
and the known distances between circle centers. This infor-
mation was combined with the image coordinates (uc, vc) of
the circle centers in the camera. A total of ∼1000 data points
were used for calibration.

5.3.4 Image feature remapping

The last step in acquiring the calibration data was determin-
ing the image coordinates in the projector panel ðuP; vPÞ
for each of the circle centers, which required determining
the pixel-to-pixel correspondences between the camera and
the projector. Hence, the absolute phases of each pixel were
obtained by sequential phase unwrapping of the AIF images
of the optimal pattern set {1, 2, 4, 8, 16}. Finally, the abso-
lute phase values of each pixel were used to calculate
the image coordinates of each detected circle center in the
projector. This completed the calibration data set, i.e.,
(XW;k, YW;k, ZW;k, uC;k, vC;k, uP;k, vP;k), for k ¼ 1; : : : ; ncalib.

5.3.5 Model fitting and selection

The calibration data set obtained was used to fit candidate
regression models to map the camera and projector image
coordinates of points on the object surface to the correspond-
ing world coordinates. The training data set was used to
determine the coefficients of the model that best fit the
data, while the validation set was utilized to assess the pre-
dictive performance of the models with a data set that was
not used during model fitting.

As discussed in Sec. 4.5, polynomial models of first, sec-
ond, and third degree were fitted to the training data set using
IRLS. Then, model selection metrics were computed using
the training data to select the single best predictive model for
each world coordinate. Figure 8 shows the behavior of error
metrics (training RMS, validation RMS) and model selection
metrics (residual MSE, cross-validation error) for the model
for predicting the ZW coordinates. Models for the XW and YW
presented similar behavior for the error metrics as ZW .
As expected, the RMS error of the model for the training
data set decreases as models with more explanatory variables
(and more tunable coefficients) are considered. Note, how-
ever, that the cross-validation (CV) error increases for theM4

(i.e., cubic) model, exhibiting its lowest value for the M3

(i.e., quadratic) model in all three cases. This is evidence
that the cubic model is overfitting the data and is thus
unable to predict new observations accurately even though
they reproduce the training data closely. Similar behavior
of both training and cross-validation errors is expected for
all higher order models.32 Based on this evidence, the quad-
ratic model was selected for the calibration data set for all
three coordinates. Table 1 shows the resulting calibration
model and its coefficients obtained from the calibration
data.

6 Experiments
Once the calibration of the SL system for microscale mea-
surements was completed, a series of tests was performed
to assess the performance of our design methodology and
calibration procedure. Both a planar object and complex
objects were used for these tests, as discussed below. The

Fig. 8 Error metrics and model selection metrics estimating the
z-coordinates using the calibration models: M1, linear; M2, linear
with interactions; M3, quadratic; M4, cubic.
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performance metrics used were (1) the measurement accu-
racy of the system and (2) surface profile measurements
with depth variations and surface discontinuities.

6.1 Planar Object

A planar object, the calibration object described in Sec. 5.3
above, was placed vertically on the stage, i.e., with the nor-
mal of the object plane aligned with the z-axis of the SL sys-
tem. The planar object was moved along the z-axis, imaged
with multiple focus settings using both full illumination and
the fringe patterns, to generate a set of AIF images following
the same approach used for calibration. Different focus set-
tings can be used for the calibration and measurement stages.

It is only required that the images taken at these focus set-
tings have complementary in-focus regions that cover the
object. As long as this condition is satisfied, AIF images of
the object can be obtained. The plane was moved 10 times in
50-μm steps from ZW ¼ 0 μm to ZW ¼ 500 μm and moved
3 times in 20-μm steps along the y-direction, for a total of
44 plane positions.

At each position, the planar object was measured using
the absolute phase maps from the fringe pattern sequence.
Then, using the calibration model, the world coordinates
of each pixel were calculated, thus generating the point
clouds. A mathematical model representing a plane was
fitted to each point cloud using linear regression. The mean
value of the ZW coordinates of the point clouds was used to
determine the z-position of the plane, which was compared
with the actual position of the stage. Figure 9 shows the
position errors, i.e., the difference between the z-position
of the fitted plane and the (known) position of the stage.
The errors are larger when the planar object is placed at
ZW ¼ f0; 50; 450; 500g μm, which coincide with the posi-
tions where the phase noise errors were larger. However,
median position errors for the central region of the measure-
ment volume, i.e., when the planar object was placed at
ZW ¼ f150; : : : ; 400g μm are under 3 μm.

6.2 Complex Objects

The SL system was then used to measure features with differ-
ent surface complexities such as straight and curved edges on
a 10-cent Canadian coin and both convex and concave
regions on small teeth of a gear from the mechanism of
a wrist watch, Fig. 10. Figure 11 shows the surface profiles
obtained for the number “3” and the letter “N” of the coin.

Fig. 9 Plane position error with respect to the stage position within the
measurement volume.

Fig. 10 Objects measured with the designed SL system: (a) microscale features “3” and “N” from
a Canadian 10-cent coin (18 mm diameter) and (b) microscale gear from a wrist watch.

Table 1 Calibration model and coefficients for the SL system.

Coordinate

Calibration model

β0 þ β1uc þ β2u2
c þ β3vc þ β4ucvc þ β5v2

c þ β6up þ β7ucup þ β8vcup þ β9u2
p

XW βX
�! ¼ = [−1.1832, 0.0141, −0.0267, 2.4420, −0.0073, 0.0002, −0.1285, 0.0662, −0.0054, −0.0159]

YW
~βY = [−1.8035, 1.9230, −0.0655, 0.0133, 0.0008, 0.0002, 1.3125, 0.1914, 0.0132, −0.1170]

ZW
~βZ = [−1.1020, −8.4957, 0.2071, −0.0223, −0.0105, −0.0052, 9.3165, −0.2730, 0.0847, 0.1714]
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Figures 11(a) and 11(b) were rendered from a point cloud
with >2 million points obtained by registration of 5 and
12 measurements, respectively. The surface profiles show
the ability of the SL system to measure height variations
on the coin.

Figure 12 shows the results of measuring teeth on the
microscale gear. This surface profile was rendered from a
point cloud with 4.5 million points, obtained by registration
of 7 measurements. The surface profile of the microscale
gear shows that the SL system is able to provide 3-D mea-
surements of objects with varying curvatures.

7 Conclusions
In this paper, a comprehensive design methodology and cal-
ibration procedure were presented for the design and imple-
mentation of 3-D SL systems using image focus fusion for
microscale measurements of objects. To the best of our
knowledge, no previous work has developed and integrated
a formal procedure to design and implement SL systems for
microscale measurements. The proposed methodology
considers the optical specifications to determine the triangu-
lation configuration that maximizes the size of the measure-
ment volume and the set of multifringe patterns that
minimizes the random noise in the 3-D measurements intro-
duced by the microscope magnification.

An empirical calibration approach using a global model
was proposed and implemented. In contrast with previous

work that fits one regression model for each pixel to predict
surface height from phase data, the proposed empirical cal-
ibration model is globally valid throughout the measurement
volume to accurately provide 3-D coordinates from phase
data. This global model has the advantage of reduced meas-
urement errors, due to the fact that more samples are used
to estimate the model coefficients and interaction terms
between the independent variables (i.e., the camera and pro-
jector pixel coordinates of a given surface point). In addition,
the inclusion of such interactions allows the model to
compensate for image distortions that may be caused by
combining images from multiple focus settings to generate
measurements.

An SL system for microscale measurements using image
focus fusion was designed using the proposed methodology
and calibration procedure. Its optimal configuration of
the hardware components and its optimal pattern sequence
were implemented. Experiments conducted with the system
and varying objects demonstrated the effectiveness of the
proposed approach for microscale measurements.
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